Mixed volume techniques for embeddings of Laman graphs
نویسندگان
چکیده
We use Bernstein’s Theorem [1] to obtain combinatorial bounds for the number of embeddings of Laman graph frameworks modulo rigid motions. For this, we study the mixed volume of suitable systems of polynomial equations obtained from the edge length constraints. The bounds can easily be computed and for some classes of graphs, the bounds are tight.
منابع مشابه
Mixed volume and distance geometry techniques for counting Euclidean embeddings of rigid graphs
A graph G is called generically minimally rigid in R if, for any choice of sufficiently generic edge lengths, it can be embedded in R in a finite number of distinct ways, modulo rigid transformations. Here, we deal with the problem of determining tight bounds on the number of such embeddings, as a function of the number of vertices. The study of rigid graphs is motivated by numerous application...
متن کاملAlgebraic Methods for Counting Euclidean Embeddings of Rigid Graphs
The study of (minimally) rigid graphs is motivated by numerous applications, mostly in robotics and bioinformatics. A major open problem concerns the number of embeddings of such graphs, up to rigid motions, in Euclidean space. We focus on lower bounds and on tight bounds for small cases, in R 2 and R, where Laman graphs and 1-skeleta of convex simplicial polyhedra, respectively, admit inductiv...
متن کاملLabeling Subgraph Embeddings and Cordiality of Graphs
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
متن کاملCombinatorial and Geometric Properties of Planar Laman Graphs
Laman graphs naturally arise in structural mechanics and rigidity theory. Specifically, they characterize minimally rigid planar bar-and-joint systems which are frequently needed in robotics, as well as in molecular chemistry and polymer physics. We introduce three new combinatorial structures for planar Laman graphs: angular structures, angle labelings, and edge labelings. The latter two struc...
متن کاملOn the Edge Crossing Properties of Euclidean Minimum Weight Laman Graphs
This paper is concerned with the crossing number of Euclidean minimum-weight Laman graphs in the plane. We first investigate the relation between the Euclidean minimum-weight Laman graph and proximity graphs, and then we show that the Euclidean minimum-weight Laman graph is quasi-planar and 6-planar. Thus the crossing number of the Euclidean minimum-weight Laman graph is linear in the number of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Geom.
دوره 43 شماره
صفحات -
تاریخ انتشار 2010